-
姓名:
馬萬彪
-
性別:
男
-
職稱:
教授
-
職務:
博士生導師
-
所在系所:
應用數學系
-
所在梯隊:
泛函微分方程與生物動力系統梯隊
-
電子郵件:
wanbiao_ma@ustb.edu.cn
-
本科生課程:
數學分析、常微分方程、高等數學、線性代數、新生導論課
-
研究生課程:
微分方程穩定性理論及其應用(碩)、生物動力系統(博)、近世代數(碩)、現代數學(博)
-
研究領域:
(1) 泛函微分方程與差分系統的穩定性理論;
(2) 種群生態學、流行病學、細胞生物學、病毒與免疫學、人工神經網絡等領域相關實際問題的動力學建模及理論與數值分析
教育經歷
1983 內蒙古師范大學數學系獲學士學位
1986 河北師范大學/內蒙古師范大學數學系獲碩士學位
1997 日本國立靜岡大學大學院獲博士學位
工作經歷
1986-1993 內蒙古師范大學數學系任助教,講師,副教授
1993-1994 日本國立京都大學訪問學者
1998-2001 日本大阪府立大學,靜岡大學任共同研究員,助手,副教授
2001-2003 北京科技大學數力系任副教授
2003-現在 北京科技大學數力系,應用數學系任教授(2011.7-2016.2:應用數學系主任)
社會兼職:
中國數學會生物數學專業委員會 副理事長兼任秘書長
生物數學學報(科學出版社出版)常務編委
Int.J.Biomath.(World Scientific,SCIE) 編委
Abstract Appl. Anal.(India, SCIE) 編委
美國[Math. Rev.]評論員
科研業績
論文論著:
在[科學通報]、[數學學報]、[數學年刊]、[數學物理學報]、[系統科學與數學]、[應用數學學報]、[SIAM J. Appl. Math.]、[Nonl. Anal. TMA]、[Nonl. Anal. RWA]、[J. Math. Anal. Appl.]、[J. Optim. Theory Appl.]、[Tohoku Math. J.]、[Bull. Math. Biosci.]、[Math. Biosci. Eng.]、[Discrete Contin. Dyn. Syst.-B]、[Appl. Math. Letters]、[Appl. Math. Modelling]、[J. Comput. Appl. Math.]、[Appl. Math. Comput.]、[Rocky Mountain J. Math.]、[J. Biol. Syst.]、[Int. J. Biomath.]、[J. Math. Chem.]、[Dyn. Contin. Discrete Impul. Syst.]、[Math. Methods Appl. Sci.]、[Japan J. Indust. Appl. Math.]、[Math. Compt. Simul.]、[Elect. J. Differ. Equations]、[J. Appl. Math.]、[Comput. Math. Methods Medicine]、[J. Natl. Sci. Found. Sri Lanka]、[Int. J. Wavelets Multiresolut. Inf. Process.]、[Int. J. Control, Auto., Syst.]、[Chaos Solitons and Fractals.]、[Neurocomputing]、[Int. J. Bifurcat. Chaos]等學術雜志合作發表論文130余篇, 其中SCI檢索60余篇, 總被引700余次, 3篇論文入選ESI高被引論文. 聯合主編國際會議論文集2部, 聯合翻譯譯著1本.
主要論文:
一、部分中文論文
[1] 馬萬彪, 一類非線性系統的穩定性, 科學通報, 31(1986), 1036.
[2] 馬萬彪, 超越函數的零點全分布在復數左半平面的代數判定準則, 科學通報, 31(1986), 558; 或 Chinese Science Bulletin, 31(1986), 1508.
[3] 馬萬彪, 一類大系統的穩定性, Chinese Science Bulletin, 32(1987), 136-137.
[4] 馬萬彪, 具有時滯的非線性控制系統的全局穩定性和全局指數穩定性, 數學學報, 31(1988), 88-94.
[5] 馬萬彪, 具有時滯的線性差分系統的全局穩定性, Chinese J. Contemp. Math., B(1988), 185 -191; 或 數學年刊, 9A(1988), 224-228.
[6] 馬萬彪, 用向量V函數法研究線性時滯微分大系統的穩定性, 應用數學學報, 12(1989), 24-29.
[7] 斯力更, 馬萬彪, 中立型線性自治系統漸近穩定的代數判定準則, Chinese Science Bulletin, 33(1988), 1059-1061; 或 科學通報, 32(1987), 1208-1210.
[8] 斯力更, 馬萬彪, 反向時滯微分不等式及應用, 科學通報, 33(1988), 1130-1133.
[9] 斯力更, 馬萬彪, 一類時滯積分微分不等式, Chinese Science Bulletin, 35(1990), 342- 344; 或 科學通報, 34(1989), 394-395.
[10] 斯力更, 馬萬彪, 超中立型泛涵微分方程的穩定性及應用, 應用數學學報, 13(1990), 265 - 280.
[11] 馬萬彪, 具有無界時滯的中立型微分大系統的不穩定性, 數學雜志, 13(1993), 525-533.
[12] 馬萬彪, 中立型積分微分方程的穩定性, 數學年刊, 15A(1994), 74-81.
[13] 馬萬彪, 非線性離散不等式及其應用, 應用數學學報, 17(1994), 613-620.
[14] 斯力更, 馬萬彪, 非線性無窮時滯微分大系統的穩定性, 數學學報,38(1995), 412-417.
[15] 付桂芳, 馬萬彪, 由微分方程所描述的微生物連續培養動力系統-(I), 微生物學通報, 31(2004), 136-139.
[16] 付桂芳, 馬萬彪, 由微分方程所描述的微生物連續培養動力系統-(II), 微生物學通報, 31(2004), 128-131.
[17] 靳 欣, 馬萬彪, 胸腺細胞發育的非線性動力系統模型的定性分析, 數學的實踐與認識, 36(2006). 99-109.
[18] 馬萬彪, 張尚國, 具有時滯的Hopfield神經網絡系統全局穩定的充要條件,生物數學前沿,生物數學叢書,陸征一、王穩地主編,81-90,科學出版社,北京, 2008
[19] 董慶來, 馬萬彪, 具有時滯和可變營養消耗率的比率型Chemostat模型的穩定性分析
系統科學與數學, 29(2) (2009), 228–241.
[20] 侯博陽, 馬萬彪, 一類具有Beddington-DeAngelis型功能反應函數的HIV病毒動力學系統模型的穩定性, 數學的實踐與認識, 39(12)(2009), 71-79.
[21] 董慶來, 馬萬彪, 具有Crowley-Martin型功能反映函數恒化器系統的漸近形態,系統科學與數學, 38(2013), 922-929.
[22] 閆海, 王華生, 劉曉璐, 尹春華,許倩倩, 呂樂, 馬萬彪, 微囊藻毒素微生物降解途徑與分子機制研究進展, 環境科學, 35(2014), No.3, 1205-1214.
[23] 邰曉東, 馬萬彪, 郭松柏, 閆海, 尹春華, 微生物絮凝的時滯動力學建模與理論分析, 數學的實踐與認識, 45(2015), No.13, 198-209.
二、部分英文論文(2000 - )
[1] Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with varying population size and finite incubation times, Nonl. Anal. TMA, 42 (2000), 931-947.
[2] W. Ma, T. Hara and Y. Takeuchi, Stability of a 2-dimensional neural network with time delays, J. Biol. Syst., 8(2000), 177-193.
[3] E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic models with distributed time delay, Nonl. Anal. TMA, 47(2001), 4107-4115.
[4] Y. Saito, W. Ma and T. Hara, Necessary and sufficient conditions for permanence of a Lotka - Volterra discrete systems with delays, J. Math. Anal. Appl., 256(2001), 162-174.
[5] Y. Saito, T. Hara and W. Ma, Harmless delays for permanence and impersistence of a Lotka - Volterra discrete predator-prey system, Nonl. Anal. TMA, 50(2002), 705-715.
[6] W. Ma, Y. Takeuchi, T. Hara and E. Beretta, Permanence of an SIR epidemic model with distributed time delays, Tohoku Math. J., 54(2002), 581-591.
[7] T. Amemiya and W. Ma, Global asymptotic stability of nonlinear delayed systems of neutral type, Nonl. Anal. TMA, 54(2003), 83-91.
[8] W. Ma and Y. Takeuchi, Asymptotic properties of a delayed SIR epidemic model with density dependent birth rate, Discrete Contin. Dyn. Syst.-B, 4(2004), 671-678.
[9] M. Yamaguchi, Y. Takeuchi and W. Ma, Population dynamics of sea bass and young sea bass, Discrete Contin. Dyn. Syst.-B, 4(2004), 833-840.
[10] W. Ma, M. Song and Y. Takeuchi, Global stability of an SIR epidemic model with time delay, Appl. Math. Letters, 17(2004),1141-1145.
[11] G. Fu, W. Ma and S. Ruan, Qualitative analysis of a Chemostat model with inhibitory exponential substrate uptake, Chaos, Solitons and Fractals., 23(2005), 873-886.
[12] M. Song, W. Ma, and Y. Takeuchi, Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and time delay, Dyn. Contin. Discrete Impul. Syst., 13 (2006), 199-208.
[13] H. Shi and W. Ma, An improved model of T cell development in the thymus and its stability analysis , Math. Biosci. Eng., 3(2006), 237-248.
[14] G. Fu and W. Ma, Hopf bifurcations of a variable yield chemostat model with inhibitory exponential substrate uptake, Chaos, Solitons and Fractals, 30 (2006), 845–850.
[15] Y. Takeuchi and W. Ma, Delayed SIR Epidemic Models for Vector Diseases, Mathematics for Life Science and Medicine, Springer, 2007, 51-65.
[16] Dan Li and W. Ma, Asymptotic Properties of a HIV-1 Infection Model with Time Delay, J. Math. Anal. Appl., 335 (2007), 683–691. ESI高被引論文
[17] M. Song, W. Ma and Y. Takeuchi, Permanence of a Delayed SIR Epidemic Model with Density Dependent Birth Rate, J. Compt. Appl. Math., 201(2007), 389-394.
[18] Y. Yamaguchi, Y. Takeuchi and W. Ma, Dynamical Properties of a Stage Structure Three- species Model with Intra-guild Predation, J. Compt. Appl. Math., 201(2007), 327-338.
[19] S. Zhang and W. Ma, Global stability of a Hopfield neural network with multiple time delays,
J. Biomath., 23(2008), 1-10.
[20] S. Zhang, W. Ma and Y. Kuang, Necessary and sufficient conditions for global attractivity of Hopfield type neural networks with time delays, Rocky Mountain J. Math., 38(2008), 1829-1840
[21] Z. Hu, Y. Yu and W. Ma, The analysis of two epidemic models with constant immigration and quarantine, Rocky Mountain J. Math., 38(2008), 1421-1436
[22] W. Ma, Y. Saito, Y. Takeuchi, M-matrix structure and harmless delays in a Hopfield-type neural network, Appl. Math. Letters, 22 (2009), 1066-1070.
[23] Z. Hu, X. Chen, W. Ma, Analysis of an SIS Epidemic Model with Temporary Immunity and Nonlinear Incidence Rate, Chinese J. Eng. Math. , 26(3)(2009), 407-415.
[24] H. Shi, W. Ma, Z. Duan, Global asymptotic stability of a nonlinear time-delayed system of T cells in the thymus, Nonl. Anal. TMA, 71 (2009), 2699-2707.
[25] G. Huang, W. Ma, Y. Takeuchi, Global properties for virus dynamics model with Beddington - DeAngelis functional response, Appl. Math. Letters, 22 (2009), 1690-1693.
[26] Z. Hu, X. Liu, H. Wang, W. Ma, Analysis of the dynamics of a delayed HIV pathogenesis model, J. Compt. Appl. Math., 234(2010), 461-476.
[27] Z. Hu, G. Gao and W. Ma, Dynamics of athree-species ratio-dependent diffusive model, Nonl. Anal. RWA, 11(2010), 2106-2114.
[28] G. Huang, Y. Takeuchi, W. Ma, D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72(2010), 1192-1207. ESI高被引論文
[29] G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70(2010), 2693–2708. ESI高被引論文
[30] G. Huang, W. Ma and Y. Takeuchi, Global analysis for delay virus dynamics model with Beddington – DeAngelis functional response, Appl. Math. Letters, 24 (2011), 1199-1203.
[31] Z. Hu, P. Bi, W. Ma and S. Ruan, Bifurcations of an SIRS epidemic model with nonlinear incidence rate, Discrete Contin. Dyn. Syst.-B, 15( 2011), 93–112.
[32] Y. Zhang, W. Ma, H. Yan and Y. Takeuchi, A dynamic model describing heterotrophic culture of chlorella and its stability analysis, Math. Biosci. Eng., 8( 2011), 1117–1133.
[33] X. Liu, H. Wang, Z. Hu and W. Ma, Global stability of an HIV pathogenesis model with cure rate, Nonl. Anal. RWA, 12 (2011), 2947–2961.
[34] L. Chen and W. Ma, A nonlinear delay model describing the growth of tumor cells under immune surveillance against cancer and its stability analysis, Int. J. Biomath., 5(2012), 1260017 (13 pages).
[35] Y. Liu, W. Ma and Magdi S. Mahmoud, New results for global exponential stability of neural networks with varying delays, Neurocomputing, 97(2012), 357-363.
[36] Y. Dong and W. Ma, Global properties for a class of latent HIV infection dynamics model with CTL immune response, Int. J. Wavelets Multiresolut. Inf. Process., 10 (2012), 1250045(19 pages).
[37] Z. Hu, W. M and S. Ruan, Analysis of SIR epidemic models with nonlinear incidence rate and treatment, Math. Biosci., 238 (2012), 12–20.
[38] Q. Dong and W. Ma, Qualitative analysis of the Chemostat model with variable yield and a time delay, J. Math. Chem., 51(2013), 1274–1292.
[39] Q. Dong, W. Ma and M. Sun, The asymptotic behavior of a Chemostat model with Crowley – Martin type functional response and time delays, J. Math. Chem., 51 (2013), 1231–1248.
[40] S. Zhou, Z. Hu, W. Ma and F. Liao, Dynamics Analysis of an HIV Infection Model including Infected Cells in an Eclipse Stage, J. Appl. Math., Volume 2013, Article ID 419593, 12 pages.
[41] T. Wang, Z. Hu, F. Liao and W. Ma, Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity, Math. Compt. Simul., 89 (2013), 13–22.
[42] D. Li, W. Ma and Z. Jiang, An epidemic model for Tick-Borne disease with two delays, J. Appl. Math., Volume 2013, Article ID 419593, 12 pages.
[43] Z. Hu, J. Zhang, H. Wang, W. Ma and F. Liao, Dynamics analysis of a delayed viral infection model with logistic growth and immune impairment, Appl. Math. Modelling, 38 (2014), 524–534.
[44] S. Guo and W. Ma, Complete characterizations of the gamma function, Appl. Math. Comput., 244 (2014), 912–916.
[45] Z. Hu, W. Pang, F. Liao and W. Ma, Analysis of a CD4+ T cell viral infection model with a class of saturated infection rate, Discrete Contin. Dyn. Syst.-B, 19(2014), 735-745.
[46] S. Guo, W. Ma and B. G. Sampath Aruna Pradeep, Necessary and sufficient conditions for oscillation of neutral delay differential equations, Elect. J. Differ. Equations, 2014 (2014), No. 138, 1-12.
[47] Q. Dong and W. Ma, Qualitative analysis of a chemostat model with inhibitory exponential substrate uptake and a time delay, Int. J. Biomath., 7(2014), 1450045 (16 pages).
[48] C. Fu and W. Ma, Partial stability of some guidance dynamic systems with delayed line-of-sight angular rate, Int. J. Control, Auto., Syst., 12(2014), 1234-1244.
[49] Z. Jiang, W. Ma and D. Li, Dynamical behavior of a delay differential equation system on toxin producing phytoplankton and zooplankton interaction, Japan J. Indust. Appl. Math., 31( 2014), 583-609.
[50] B. G. Sampath Aruna Pradeep and W. Ma, Stability properties of a delayed HIV dynamics model with Beddington - Deangelis functional response and absorption effect, Dyn. Contin. Discrete Impul. Syst., Series A: Math. Anal., 21 (2014), 421-434.
[51] Z. Jiang and W. Ma, Permanence of a delayed SIR epidemic model with general nonlinear incidence rate, Math. Methods Appl. Sci., (38)2015, 505–516.
[52] J. Dong and W. Ma, Sufficient conditions for global attractivity of a class of neutral Hopfield-type neural networks, Neurocomputing, 153(2015), 89-95.
[53] B. G. Sampath Aruna Pradeep and W. Ma, Global stability of a delayed Mosquito- transmitted disease model with stage structure, Elect. J. Differ. Equations, 2015 (2015), No. 10, 1-19.
[54] Y. Liu, W. Ma, Magdi S. Mahmoud and S. M. Lee, Improved delay-dependent exponential stability criteria for neutral-delay systems with nonlinear uncertainties, Appl. Math. Modelling, 39(2015), 3164-3174.
[55] T. Zhang, W. Ma, X. Meng and T. Zhang, Periodic solution of a prey–predator model with nonlinear state feedback control, Appl. Math. Comput., 266 (2015), 95–107.
[56] B. G. Sampath Aruna Pradeep and W. Ma, Global stability analysis for vector transmission disease dynamic model with non-linear incidence and two time delays. J. Interdisciplinary Math. 18 (2015), No. 4, 395–415.
[57] Z. Jiang and W. Ma, Delayed feedback control and bifurcation analysis in a chaotic Chemostat system, Int. J. Bifurcat. Chaos, 25(2015), No.6, 1550087 (13 pages).
[58] F. Li, W. Ma, Z. Jiang and D. Li,Stability and Hopf bifurcation in a delayed HIV infection model with general incidence rate and immune impairment,Comput. Math. Methods Medicine,2105(2015), ID 206205, 14 pages.
[59] T. Zhang, W. Ma and X. Meng, Dynamical analysis of a continuous-culture and harvest chemostat model with impulsive effect, J. Biol. Syst., 23 (2015), 555–575.
[60] B. G. Sampath Aruna Pradeep, W. Ma and S. Guo, Stability properties of a delayed HIV model with nonlinear functional response and absorption effect, J. Natl. Sci. Found. Sri Lanka, 43(2015), No.3, 235-245.
[61] Z. Hu, H. Wang, F. Liao and W. Ma, Stability analysis of a computer virus model in latent period, Chaos Solitons and Fractals, 75(2015), 20-28.
出版譯著:
時滯微分方程: 泛函微分方程引論(日), 內藤敏機, 原惟行, 日野義之, 宮崎倫子著, 馬萬彪,陸征一 譯, 科學出版社, 北京, 2013.
科研業績:
1. 生態動力系統的定性分析, 教育部留學回國基金, 2001-2003, 主持
2. 依賴于媒介的傳染病時滯微分系統與細胞免疫時滯微分系統的穩定性研究, 國家自然學基金 (面上項目), 2007-2009, 主持
3. 官廳水庫上游媯水湖防止富營養化和藍藻水華發展的復合生態工程治理研究, 北京市教委-北京科技大學共建項目, 2007-2009, 參加
4. 小球藻的異養培養及在生物學降解水體中氮(N)-磷(P)-微囊藻(MCs)研究中的一些動力學問題 (面上項目), 國家自然科學基金, 2011-2013, 主持
5. 光合細菌絮凝與收集相關問題的動力學建模與理論和數值研究, 國家自然科學基金 (面上項目), 2015 -2018, 主持
獲得獎勵
獲得獎勵/專利:
中立型時滯微分方程解的性態和穩定性的研究, 內蒙古自治區科學技術進步一等獎, 1992, 獲獎人:斯力更, 馬萬彪
關于我們
地址:北京市海淀區學院路30號北京科技大學理化樓
郵編:100083
聯系方式:010-62332685、62332895
北京科技大學數理學院?版權所有 北京市海淀區學院路30號 100083 京公網安備:110402430062 | 京ICP備:13030111